Mesures physiques 1^{ère} année Epreuve de Métrologie 1/4 I.U.T. de Caen, novembre 2001

Durée 2h. Tous les documents sont interdits. Un instrument de calcul est autorisé.

I. QUESTIONS DE COURS

Cette feuille tient lieu de copie pour les questions suivantes.

Nom:	Prénom :	N° d'appel :
A. DEFINITIONS		
Définissez les termes suivants :		
MESURANDE:		
MESURAGE DE TYPE A :		
MESURAGE DE TYPE B :		
MESCRICE DE TITE D.		
MESURE:		
JUSTESSE d'un instrument :		
TRACABILITE:		
B. UNITES		

Pour chacune des 12 grandeurs suivantes, indiquez l'unité habituelle et le symbole correspondant, précisez s'il s'agit d'une des sept grandeurs de base du Système International d'Unités.

Grandeur	Unité	Symbole	Base du SI
Tension électrique			
Intensité lumineuse			
Température			
Fréquence			
Longueur			
Puissance			
Temps			
Force			
Masse			
Courant électrique			
Quantité de matière			
Energie			

Durée 2h. Tous les documents sont interdits. Un instrument de calcul est autorisé.

II. EQUATIONS AUX DIMENSIONS DES TRANSFERTS THERMIQUES

Cette feuille tient lieu de copie pour les questions suivantes.

Nom:	Prénom:		N° d'appel :

1) La capacité thermique massique c est définie par la relation :

$$Q = m c (T_2 - T_1)$$

où Q est la quantité de chaleur nécessaire pour élever une masse m d'un corps de la température T_1 à la température T_2 (on rappelle que la chaleur est une énergie).

- a) Donner l'équation aux dimensions de Q
- b) Donner l'équation aux dimensions de c
- 2) La conductibilité thermique k régit le transfert de chaleur par conduction d'un point de température T_1 vers un point de température T_2 à travers une surface S selon :

$$\Phi = \text{-k} \ \frac{S}{e} \ (T_2 \text{ -} \ T_1) \qquad \qquad \text{avec} \ \Phi : \text{chaleur transportée par unité de temps}$$

e : distance séparant les points considérés

- a) Quelle est la nature de la grandeur physique Φ ?
- b) En déduire une unité pour k.
- c) Donner l'équation aux dimensions de k.
- 3) L'équation de la chaleur dans un milieu de masse volumique ρ s'écrit :

$$k \frac{\partial^2 T}{\partial x^2} + q = \rho c \frac{\partial T}{\partial t}$$

On rappelle que la dérivation par rapport à une variable équivaut, d'un point de vue dimensionnel, à une division par cette variable ; x représente l'abscisse et t le temps.

- a) Donner l'équation aux dimensions de chacun des termes $k \frac{\partial^2 T}{\partial x^2}$ et ρ c $\frac{\partial T}{\partial t}$
- b) En déduire l'équation aux dimensions de q

Durée 2h. Tous les documents sont interdits. Un instrument de calcul est autorisé.

III. MESURE D'UNE ACTIVITE RADIOACTIVE

Cette feuille tient lieu de copie pour les questions suivantes.

Nom: Prénom: N° d'appel:

On mesure l'activité radioactive d'une source à partir d'une source étalon à l'aide d'une chaîne de spectrométrie nucléaire. La relation permettant d'obtenir l'activité de la source est la suivante :

$$A_2 = A_1 \frac{N_2 - N_0}{N_1 - N_0}$$

Avec A₁: Activité radioactive de la source étalon

A₂: Activité radioactive de la source à mesurer

N₀ : Nombre d'impulsions enregistrées par la chaîne en l'absence de source

N₁ : Nombre d'impulsions enregistrées par la chaîne en présence de la source étalon

N₂: Nombre d'impulsions enregistrées par la chaîne en présence de la source à mesurer

On donne:

 $A_1 = 37253$ becquerels (Bq). Incertitude relative sur $A_1 = 2.5$ %

 $N_0 = 350 \pm 35$; $N_1 = 27920 \pm 480$; $N_2 = 8210 \pm 190$

- a) Donner l'expression littérale de l'incertitude relative $\frac{\Delta A_2}{A_2}$.
- b) Calculer numériquement chacun des termes de l'expression précédente.
- c) Indiquez si un ou plusieurs de ces termes sont négligeables [1] par rapport aux autres, puis calculez $\frac{\Delta A_2}{A_2}$.
- d) Calculez A_2 , puis ΔA_2 . Présenter le résultat de la mesure.
- [1] x est négligeable devant y si l'ordre de grandeur de x est inférieur à celui de $\frac{y}{100}$, c'est à dire si x \leq .

Durée 2h. Tous les documents sont interdits. Un instrument de calcul est autorisé.

IV. EFFET DE LA ROTATION DE LA TERRE SUR LA PESANTEUR.

Cette feuille tient lieu de copie pour les questions suivantes.

Nom:	Prénom:	N° d'appel :	

En supposant que la terre soit parfaitement sphérique, on montre que l'accélération de la pesanteur en un lieu de latitude λ , du fait de sa rotation propre, est :

$$g = g_0 - \omega^2 R \cos^2 \lambda$$

Avec : g₀, l'accélération de la pesanteur aux pôles

R, le rayon de la Terre

λ, la latitude du lieu

et $\omega = 2\pi / T$, la vitesse angulaire de la rotation de la Terre sur elle-même

On donne : $T = 23h \ 56' \ 4'' \pm 2''$

 $g_0 = 9.83216 \pm 0.00001 \text{ ms}^{-2}$

 $R = 6367 \pm 11 \text{ km}$

 $\lambda = 49^{\circ} 15' \pm 5'$

- 1) Calculer ω et $\Delta\omega$. Présenter correctement le résultat.
- 2) Calculer g
- 3) Etablir l'expression littérale de Δg
- 4) Calculer chacun des termes de Δg . Indiquer si des termes sont négligeables [2] devant les autres.
- 5) Calculer Δg et présenter g correctement.
- 6) Calculer l'erreur systématique relative $\frac{|g_0 g|}{g}$ commise lorsqu'on utilise g_0 à la place de g.
- 7) Comparer cette erreur avec l'incertitude relative sur g. Le calcul de g est-il nécessaire ou g_0 est-il suffisant ?
- [2] x est négligeable devant y si l'ordre de grandeur de x est inférieur à celui de , c'est à dire si $x \le 1$.