Examen de Métrologie Étalonnage d'une inductance par substitution SOLUTIONS

Détermination de l'incertitude d'étalonnage d'une inductance mesurée par substitution.

Bilan d'incertitude

1. Calculez L_x

$$L_x = L_{x-lue} + (L_E - L_{E-lue}) + C_M = L_E + \Delta L + C_M$$
 $L_x = 9.9632 + 10.123 - 10.1363 + 0$ $L_x = 9.94990 H$

2. Déterminez les coefficients de sensibilité de Lx.

La fonction L_x est une simple somme sans coefficients, ses dérivées partielles sont donc toutes égales à 1 :

$$\begin{split} dL_x &= \frac{\partial L_x}{\partial L_E} dL_E + \left(\frac{\partial L_x}{\partial L_{x-lue}} dL_{x-lue} - \frac{\partial L_x}{\partial L_{E-lue}} dL_{E-lue} \right) + \frac{\partial L_x}{\partial C_M} dC_M \\ soit: \qquad dL_x &= dL_E + \left(dL_{x-lue} - dL_{E-lue} \right) + dC_M \end{split}$$

Avec:
$$\frac{\partial L_x}{\partial L_E} = 1$$
; $\frac{\partial L_x}{\partial L_{x-lue}} = 1$; $\frac{\partial L_x}{\partial L_{E-lue}} = 1$ et $\frac{\partial L_x}{\partial C_M} = 1$

3. Calculez les contributions de toutes les sources d'incertitude en précisant pour chacune le type d'incertitude dont elle relève.

Les sources d'incertitudes liées à l'étalon. Elles relèvent toutes du type BR1.

L'incertitude relative liée au certificat d'étalonnage est $\frac{U_{BR1}}{L_E}$ = 3.10⁻⁴ avec k_{BR1} = 2; soit donc U_{BR1} = 10,123 * 3.10⁻⁴ = 3,04 mH

finalement:
$$u_{BR1} = \frac{U_{BR1}}{k_{BB1}}$$
 $u_{BR1} = 1,52 \text{ mH}$

La dérive maximale observée lors des étalonnages successifs, 2 mH, est prise comme intervalle de confiance (deux fois l'incertitude élargie absolue). Soit donc $U_{BR2} = 1$ mH. La distribution est supposée uniforme, soit donc un coefficient d'élargissement $k_{BR2} = \sqrt{3}$.

finalement:
$$u_{BR2} = \frac{U_{BR2}}{k_{BR2}}$$
 $u_{BR2} = 577 \mu H$

L'effet de la température est modélisé par le coefficient de température $\alpha = 3.10^{-5}\,\text{K}^{-1}$. La régulation de température produit une incertitude absolue sur T avec une distribution en arcsinus, $U_T = 1\,\text{K}$ et $k_T = \sqrt{2}$. Soit $u_T = U_T / k_T = 707\,\text{mK}$. Nous supposons que l'effet de l'incertitude sur α est négligeable. Une variation de la température a pour effet une variation proportionnelle de L_E .

finalement:
$$u_{BR3} = \alpha L_E u_T$$
 $u_{BR3} = 215 \mu H$

¹ La séparation entre les BR et les BL pourrait être débattue au cas par cas. Pour simplifier, elle est imposée par l'énoncé.

Sources d'incertitude liées au pont de mesure. Elles relèvent toutes du type BL.

L'incertitude de linéarité du pont est comptabilisée pour la différence $\Delta L = L_{x-lue} - L_{E-lue}$. L'incertitude correspondante est $U_{BL1} = 10^{-4}L_x$ avec un élargissement $k_{BL1} = 1$

finalement: $u_{BL1} = 996 \mu H$

L'incertitude de résolution U_{BL23} = 50 μH est prise égale à la moitié de la résolution, puisque celle-ci est considérée comme l'intervalle de confiance. Cet intervalle est admis à 95% de confiance, ce qui correspond à une distribution normale et un coefficient d'élargissement k_{BL23} = 2. Cette incertitude est à prendre en compte pour les deux mesures de L_{E-lue} et de L_{x-lue} :

finalement: $u_{BL2} = u_{BL3} = 25 \mu H$

L'incertitude-type liée au montage est le résultat d'un bilan effectué par ailleurs, nous lui attribuons le type $BL : u_{BR4} = 2 \text{ mH}.$

4. Dressez un tableau permettant d'effectuer le calcul de l'incertitude-type sur L_X.

								Contributions	
Grandeur	Valeur	Unité	Source d'U	U	.k	.u	Sensibilités	A ou BR	BL
L _E	10,1230	Н	Étalonnage	3,04E-03	2	1,52E-03	1	1,52E-03	
			Dérive	1,00E-03	1,73	5,77E-04		5,77E-04	
			Température	3,04E-04	1,41	2,15E-04		2,15E-04	
ΔL	-0,1731	Н	Linéarité	9,96E-04	1	9,96E-04	1		9,96E-04
			Résolution L _{E-lue}	5,00E-05	2	2,50E-05			2,50E-05
			Résolution L _{x-lue}	5,00E-05	2	2,50E-05			2,50E-05
C _M	0	Н	Montage	2,00E-03	1	2,00E-03	1		2,00E-03
								Somme quadratique Somme des valeur	
								:	absolues:
L _x	9,94990	Н	Bilan	6,92E-03	2	3,46E-03	Somme quadratique	1,64E-03	3,05E-03
			L _x =	9949,9	±	6,9	.mH	Urel =	6,95E-04

Les contributions dominantes à u_{LX} sont les incertitudes liées à l'étalonnage et au montage.

5. Calculez l'incertitude-type sur L_x, ses incertitudes absolue et relative. Présentez le résultat final de <u>l'étalonnage</u>.

Nous ne sommes pas en mesure de montrer l'indépendance 2 à 2 des variations aléatoires qui produisent les incertitudes de type BL, aussi elles sont sommées en valeur absolues. Les autres sources (type A et BR) sont supposées parfaitement non corrélées et sommées quadratiquement :

$$u_{Lx} = \sqrt{\sum_{i=1}^{4} (u_{BRi})^2 + \left(\sum_{i=1}^{3} |u_{BLi}|\right)^2}$$

Ces deux modes de calculs séparés sont mis en évidence dans le tableau de travail ci-dessus en rappelant les contributions dans deux colonnes séparant les type A ou BR des types BL.

finalement l'incertitude-type sur L_X est : $u_{LX} = 3,46 \text{ mH}$

La composition de plusieurs variables aléatoires indépendantes produit une distribution normale (théorème centrale-limite) pour laquelle, sans indication contraire, il est convenu d'adopter un élargissement égal à 2.

Soient donc l'incertitude élargie absolue : $U_{Lx} = 6,92 \text{ mH}$ et l'incertitude relative : $\frac{U_{Lx}}{L_x} = 6,95.10^{-4}$

$$L_X = 9949,9 \pm 6,9 \text{ mH}$$