Durée 3 heures.

Tous les documents sont interdits Un seul instrument de calcul est autorisé.

Il est conseillé de lire l'énoncé jusqu'au bout dès le début de l'épreuve.

Encadrez les résultats symboliques et soulignez les applications numériques

I. CIRCUIT DERIVATEUR

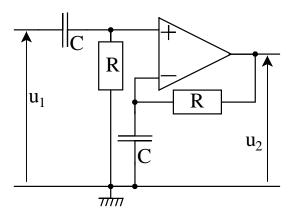


Figure 1 : circuit dérivateur non inverseur. $R = 68 \text{ k}\Omega$ et C = 3.9 nF.

A. CIRCUIT THEORIQUE

- 1. Expliquez pourquoi, dans ce circuit, l'amplificateur opérationnel peut être supposé parfait.
- 2. En exprimant les tensions aux entrées inverseuse et non inverseuse de l'AOP, établissez la fonction de transfert de ce circuit, $\underline{T}(j\omega) = \begin{pmatrix} \underline{u}_2 \\ \underline{u}_1 \end{pmatrix}$.
- 3. Montrez que $u_2(t) = RC \frac{du_1}{dt}$
- $4. \quad \text{Calculez la fréquence de transition } f_T \text{ du circuit, pour laquelle } G(f_T) = 20 \ log |\underline{T} \ (j\omega_T)| = 0 \ dB.$
- 5. Sur les diagrammes semi-logarithmiques joints, tracez le diagramme de Bode de $T(j\omega)$.
- 6. Quel problème pose ce circuit aux très hautes fréquences ?

B. AMELIORATION

- 1. Pour améliorer le circuit, une méthode consiste à placer une résistance $R' = 8.2 \text{ k}\Omega$ en série avec chaque condensateur C. Exprimez la nouvelle fonction de transfert $\underline{T}'(j\omega)$.
- 2. Identifiez le type du filtre réalisé et écrivez la fonction de transfert sous sa forme canonique.
- 3. Calculez la fréquence de coupure et le gain dans la bande passante de ce nouveau circuit. Montrez que la nouvelle fréquence de transition f_T est quasiment égale à f_T , calculée au §I.A.3.
- 4. Sur les mêmes diagrammes qu'au §I.A.4., tracez les asymptotes et les courbes de Bode du nouveau circuit.

II. AMPLIFICATEUR A TRANSISTOR PJFET

Soit l'amplificateur présenté figure 2. Votre travail est de déterminer son point de repos, puis ses caractéristiques dynamiques. Aux fréquences de fonctionnement, les capacités sont assimilées à des courts-circuits.

Rappel : pour un transistor PJFET fonctionnant en amplificateur, la caractéristique de transfert $I_D(U_{GS})$ est donnée par :

$$I_{D} = I_{DSS} \left(1 - \frac{U_{GS}}{U_{P}} \right)^{2},$$

avec I_{DSS} une constante et U_P la tension de pincement du transistor. Pour le composant considéré ici, $I_{DSS} = -15$ mA et $U_P = 6.85$ V.

A. ETUDE DU POINT DE POLARISATION

- 1. Calculez U_{GS} pour avoir le courant de drain $I_D = I = -5$ mA au repos.
- 2. Calculez $R_S = r + r'$ pour avoir les valeurs de I et U_{GS} imposées.
- 3. Calculez U_{DS} , la tension drain-source au point de repos. U_{DS} rempli-t-elle la condition nécessaire pour que le PJFET fonctionne bien en mode transistor (et pas dans le mode résistance variable)?
- 4. Exprimez la transconductance $g_m=s=y_{21}=\left(\frac{\partial I_D}{\partial U_{GS}}\right)$ au point de repos. Calculez y_{21} .

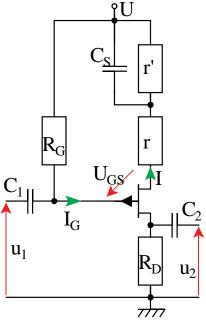


Figure 2 : amplificateur à transistor PJFET. U = 22 V; $R_D = 1.8 k\Omega$; $R_G = 1.5 M\Omega$; $R_S = r + r'$.

II. ETUDE DYNAMIQUE EN REGIME PERMANENT DE PETITS SIGNAUX

- 1. Tracez le schéma équivalent au montage pour le régime permanent de petits signaux. Vous négligerez la conductance de sortie du schéma équivalent au transistor à effet de champ ($y_{22} \ll 1/R_D$).
- 2. Exprimez $A_u = (u_2/u_1)$ l'amplification en tension du montage, au point de repos considéré. Calculez A_u , pour r = 0 et pour $r = R_S$, ainsi que G_u , le gain correspondant en décibels.
- 3. Calculez r pour avoir $G_u = 10$ dB. Dans ce cas, proposez 2 valeurs de la série E12 pour r et r'.

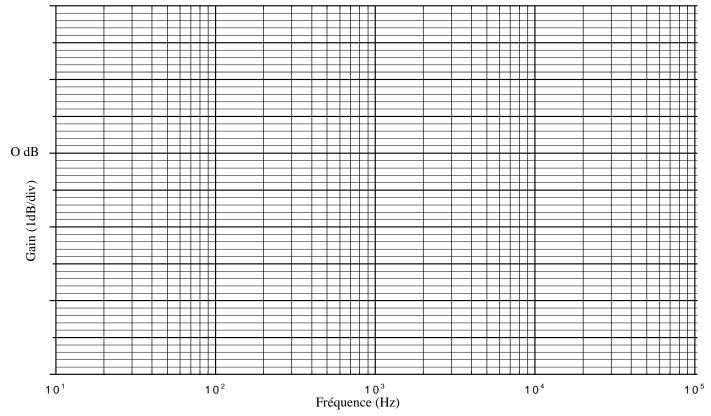
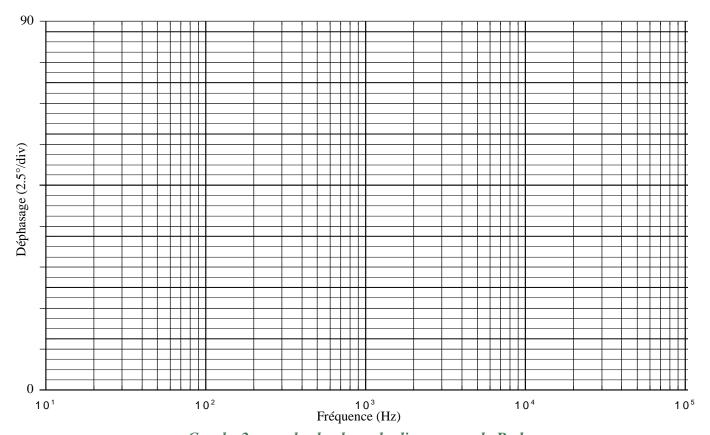

1.0 1.2 1.5 1.8 2.2 2.	3.3 3.9	4.7 5.6	6.8 8.2
------------------------	---------	---------	---------

Tableau des valeurs de résistances disponibles dans la série E12, à multiplier par des puissances de 10.


III. QUESTIONS DE COURS

- V_{I_0} R_0 T_1 T_2 T_2 T_3 T_4 T_2 T_3 T_4 T_2
- 1. Quel est le nom du circuit présenté figure 3?
- 2. A quoi sert ce type de circuit ?
- 3. Proposez un schéma équivalent à ce circuit, qui tienne compte de l'effet Early.
- 4. De quel type sont les transistors T_1 et T_2 ?
- 5. Quels sont les porteurs majoritaires dans ce type de transistor?

Courbe 1 : courbe de gain du diagramme de Bode.

Courbe 2 : courbe de phase du diagramme de Bode